### [Markdown and LaTeX introduction](https://ashki23.github.io/markdown-latex.html)
- $x + y$
- $x - y$
- $x \times y$
- $x \div y$
```md
- $x + y$
- $x - y$
- $x \times y$
- $x \div y$
```
$$ \frac{-b\pm \sqrt{b^{2}-4ac}}{2a} $$
```
$$ \frac{-b\pm \sqrt{b^{2}-4ac}}{2a} $$
```
$$P \left( A=2 \, \middle| \, \dfrac{A^2}{B}>4 \right)$$
```
$$P \left( A=2 \, \middle| \, \dfrac{A^2}{B}>4 \right)$$
```
$$\dfrac{n!}{k!(n-k)!} = \binom{n}{k}$$
```
$$\dfrac{n!}{k!(n-k)!} = \binom{n}{k}$$
```
$$
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
$$
```
$$
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
$$
```
$$
M =
\begin{pmatrix}
\frac{5}{6} & \frac{1}{6} & 0 \\[0.3em]
\frac{5}{6} & 0 & \frac{1}{6} \\[0.3em]
0 & \frac{5}{6} & \frac{1}{6}
\end{pmatrix}
[\quad|\qquad]
M =
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
$$
```
$$
M =
\begin{pmatrix}
\frac{5}{6} & \frac{1}{6} & 0 \\[0.3em]
\frac{5}{6} & 0 & \frac{1}{6} \\[0.3em]
0 & \frac{5}{6} & \frac{1}{6}
\end{pmatrix}
[\quad|\qquad]
M =
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
$$
```
$$
A_{m,n} =
\begin{bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{bmatrix}
$$
```
$$
A_{m,n} =
\begin{bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{bmatrix}
$$
```
---